

Charter Township of Grand Blanc
Consumer Confidence Report
1999

This report covers the drinking water quality for the Charter Township of Grand Blanc for the calendar year 1999. This information is a snapshot of the quality of the water that we provided in 1999. Included in this report are details about where your water comes from, what it contains and how it compares to Environmental Protection Agency (EPA) and state standards.

Our water comes from Lake Huron, (see map on page 4) which is considered a surface water supply. An assessment of our source water will be conducted by the Michigan Department of Environmental Quality by 2003. We will inform you on how to acquire this assessment report when it becomes available.

Contaminants and their presence in water: Drinking water, bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants DOES NOT necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (800-426-4791).

Vulnerability of Sub Populations: Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as chemotherapy patients, organ transplant recipients, those suffering from HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Contaminants that may be present in the source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture and residential uses.
- Radioactive contaminants, which are naturally occurring.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production and can also come from gas stations, urban runoff, and septic systems.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public systems. Food & Drug Administration regulations establish limits for contaminants in bottled water which provide the same protection for public health.

Water Quality Data

The following tables list all the drinking water contaminants that we detected during the 1999 calendar year. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in these tables are from testing done during the calendar year 1999. The State allows us to monitor certain contaminants less than once each year because the concentration of the contaminants is not expected to vary significantly from year to year. All of the data is representative of the water quality, but some are more than one year old.

Lead: Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of the materials used in your homes plumbing. If you are concerned about **elevated lead levels** in your homes water, you may wish to have your water tested. You can also flush your tap for 30 seconds to 2 minutes before using your water. Additional information is available from the Safe Drinking Water Hotline at 1-800-426-4791.

Is our water system operating properly and meeting the rules established by the State and EPA?

YES! We have met all the State and EPA requirements. i.e., water testing, monitoring and reporting for 1999.

During 1999 we collected X4 bacteriological samples throughout our water distribution system and can proudly say there has been no presence of contamination detected.

We are committed to providing you safe, reliable and healthy water. We are pleased to provide you with this information to keep you fully informed about your water. We will be updating this report annually, and will also keep you informed of any problems that may occur throughout the year.

For more information on your **water** or the contents of this report, you may contact Norm Riopelle at 810-424-2642 or you can additional information on our web site www.twp@grand-blanc.mi.us or on the EPA web site www.epa.gov/epahome/rules.html

STATE OF MICHIGAN

JOHN ENGLER, Governor

JOHN ENGELEN, COMMISSIONER
DEPARTMENT OF ENVIRONMENTAL QUALITY

"Better Service for a Better Environment"
HOLLISTER BUILDING, PO BOX 30473, LANSING MI 48909-7973

REPLY TO:

SHIAWASSEE DISTRICT OFFICE
10650 BENNETT DR
MORRICE MI 48857-9792

INTERNET www.dsg.state.mn.us
RUSSELL J. HARDING, DIRECTOR

November 22 | 1999

Mr. Michael Aubin
Genesee County Drain Commission
G-461 0 Beecher Road
Flint, Michigan 48532-2617

WSSN: 2615

Dear Mr. Aubin;

SUBJECT Lead and Copper Monitoring
For Compliance with U.S. EPA Lead and Copper Regulations
CORRECTED COPY: Water Quality Parameter Sampling Dates

We received your report for the monitoring period: . **January 1, 1999 -June 30, 1999**

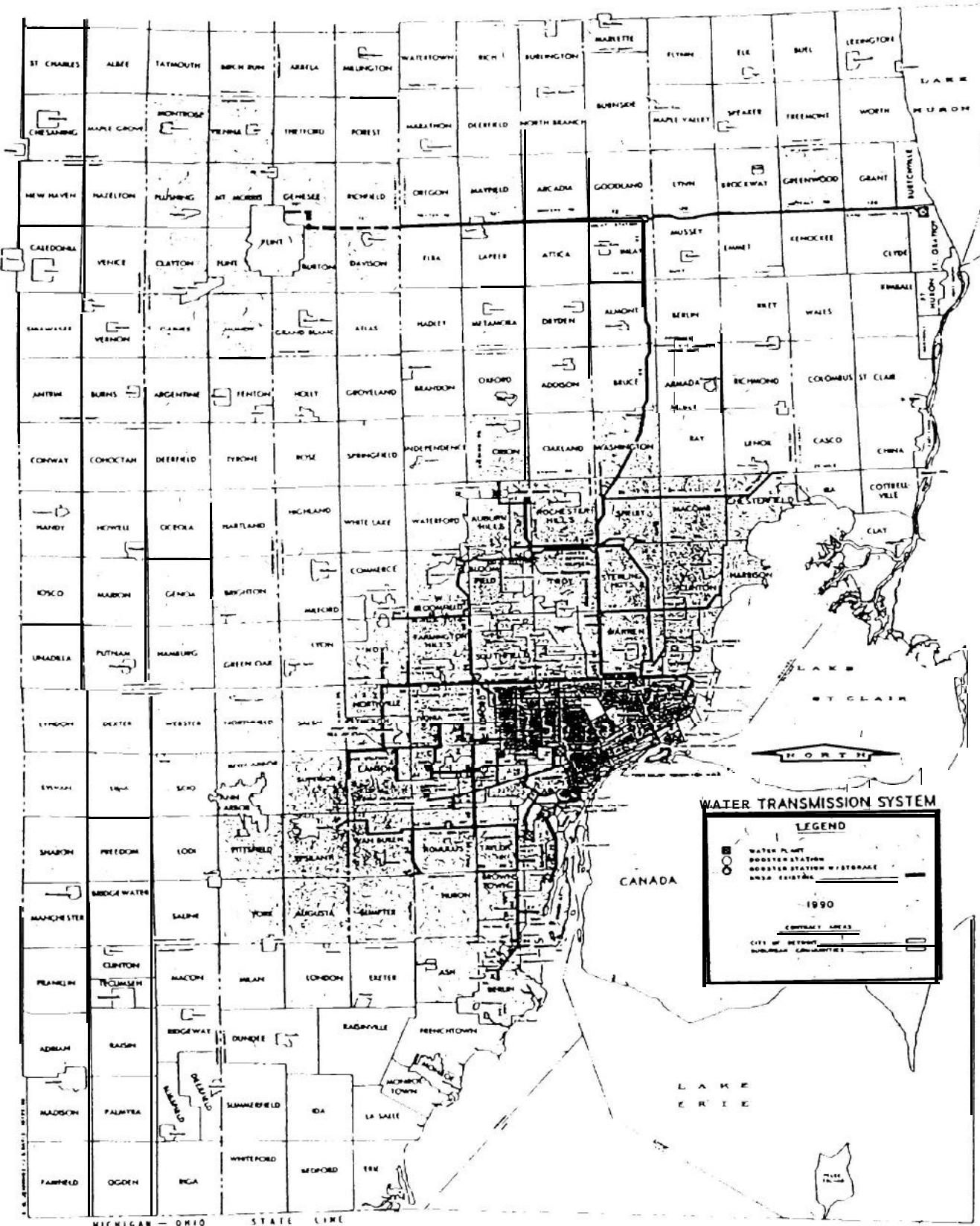
Results		Next Monitoring Period		
	Your Results 90 th Percentile	EPA Directed Action Levels	Take samples within these dates	Number of Distribution Samples Required
Lead	3 ppb	15 ppb	June 1, 2000 and September 30, 2000	50 (at least five from each community)
Copper	152 ppb	1300 ppb		
Water Quality Parameters. pH, alkalinity, conductivity, phosphate residual			Jul 1 to Dec 31, 1999 Jan 1 to Jun 30, 2000	Two sets from 6 distribution sites
Please submit results of next period by.			As soon as possible after receiving results	October 10, 2000

Your results are within the U.S. EPA directed action levels,

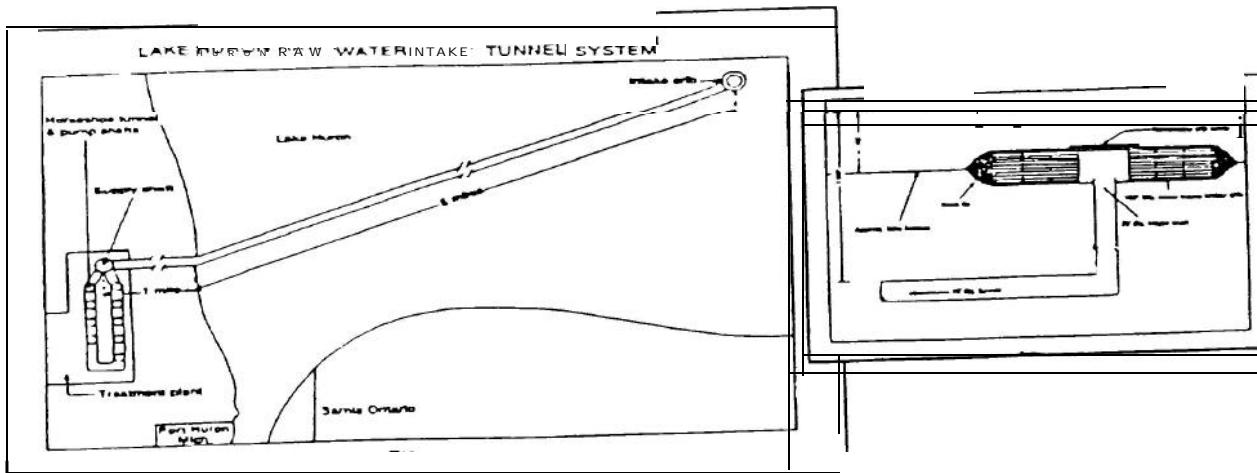
Samples due during the next period mark your first round of annual monitoring! Please make every attempt to select the same sites used in the previous monitoring period, giving Tier 1 sites first priority. If original sites are unavailable, select replacement sites based on the Tier 1, 2, and 3 criterion.

Please contact the Detroit Water and Sewerage Department (DWSD) for sample bottles, reporting forms, and the schedule for accepting samples for analysis. If you have questions, please call us at the numbers below.

Michael F. Prysby, P.E.
District Engineer
517-625-4670


Jean M. Shekter
Resource Analyst
51 T-625-4625

MFP:JMS:W


CCI Ms. Pamela Turner, Detroit Water and Sewerage Department
Genesee County Health Department

POST-IT Fax Note	7671	Date 5/30/06	Page 1 of 2
To: WMC/Hospital			
From: Jester-Debra			
CO/DOB# (44) 44			
Co			
Phone # (447-425-1162)			
PRINC #			
PMT# (447-425-1162)			
SIC-732-CC# 44			
5220			

Water System: Service Area

Lake Huron Treatment Plant

Water for treatment at the Lake Huron Plant arrives via a deep tunnel with the intake off shore under 45 feet of water.

The six-mile long, 16-foot diameter raw water tunnel system and the Lake Huron Treatment Plant, located five miles north of the City of Port Huron, were constructed in the early 70's.

The main tunnel is 200 feet below the surrounding ground surface. After a 20-foot diameter vertical shaft was constructed at the plant site, an 18-foot diameter horizontal hole was bored through antrim shale deposits by means of a mechanical mole - one mile to the lake shore and five miles out under the lake to a second vertical shaft.

The second shaft was constructed from the tunnel vertically to the bottom of the lake using soil freezing methods. The free-standing horizontal hole was then lined with a one-foot-thick layer of concrete resulting in the 16-foot inside tunnel diameter.

The shaft facilities at the plant site were constructed using complex soil freezing techniques to insure that lake

or ground water would not seep into the construction work.

For practical reasons and design economy, a raw water intake should be built at its ultimate or final desired size. Once a tunnel is in use, it is not feasible to close it down and enlarge at a later date. Constructing two smaller diameter tunnels at different times can be prohibitively expensive. Therefore, a mathematical principle used was allowing tunnel flow volume to be doubled without a tunnel diameter increase.

For example, the Lake Huron plant was sized to produce 800 million gallons a day (MGD) of treated water. Phase I called for a plant one-half that size of 400 MGD. A tunnel to supply Phase I would have been 11-feet, 4-inches in diameter. A second tunnel would have been required in the future.

By increasing the 11-foot, 4-inch tunnel by only 4-feet, 8-inches (to the 16-foot diameter size constructed), the tunnel's potential capacity was increased to 800 MGD. This was an investment in DWSD's future.

Due to the lowered population projections, the initial output capacity of the plant was scaled back to 240 MGD (300 MGD if all pumps are running). The 400 MGD can be reached by simply adding pumps. To reach the 800 MGD level, a transmission main, a sedimentation basin, pumps and filter sand would be needed.

Another built-in advantage for either population increases or for security and reliability purposes, allows an increase in the tunnel's capacity to 1,200 MGD simply by increasing intake velocities.

This additional 400 MGD increase can be made available under ideal no-icing (i.e., summer) conditions. However, to use this potential capacity on a permanent basis, additional pumps, treatment facilities and transmission mains would be necessary.

Construction of such facilities could increase the water system's reliability by providing alternate supplies to DWSD's two other downstream intake systems at Belle Isle and Fighting Island.

Lake Huron Treatment Plant

GENERAL STATISTICS

Area of site	- 457 Acres	Total Reservoir Capacity	- 2 @ 15 MG Each
Normal Rated Capacity	- 800 MGD	PRODUCTION RATES	
High Lift Pumping Capacity	- 300 MGD Present	Average Day	- 121.7 MG
	- 15 Future Pumps	Maximum Day	- 173 MG
Number of Filters	- 20 Present	Maximum Hour	- 210 MG
	- 20 Future		
Number of High Lft Pumps	- 5	• MGD Million Gallons per Day	
Number of Low Lift Pumps	- 4		

GENERAL INFORMATION

Local ion	3993 Metcalf Road, North Street, Fort Gratiot
Area of Site	- 457 Acres
Water Source	Lake Huron
Raw Water Tunnel	6 Miles - 16 ft. in diameter
Average Depth of Tunnel	190 Feet
Rated Plant Capacity	1200 MGD (Intake Capacity)
Reservoir Capacity	2 @ 15 Millions Gallons Each
Underfilter Storage	4 Million Gallons
Electric Power Supply	Detroit Edison
Transformers	2 @ 120 • 13.8 K.V

PUMPING PLANTS

Low Lift Plant:

Function of Building	- Houses pump which lift water from raw water tunnel to treatment plant level.
Building Shape	Rectangular
Cassion Depth	243 Feet
Building Height	59.5 Feet
Elevations (Sea Level)	
Pump Floor	610.5
Center Line of Pumps	623 (100 MGD) 624.7 (200 MGD)
Motor Floor	629.2 (100 MGD) 631.2 (200 MGD)
Number of Pumps	4
Type of Pumps	Byron Jackson Vertical Single Stage
Rated Capacity (53' Head)	2 @ 100 MGD 2 @ 200MGD
Pump Motors - Synchronous	2 @ 100 MGD 1250 Horse Power 450 RPM - 2 @ 200 MGD 2250 Horse Power 327 RPM

High Lift Plant:

Functions of Building	Houses pumps which supply potable water to the distribution system.
Elevations (Sea Level)	
Pump Floor - 603.5	
Motor Floor - 616.5	
Center Line of Pumps - 609	
Building Height	45.75 feet
Number of Pumps	5
Rated Capacity (416.5' Head)	5 @ 60 MGD
Pump Motors - Synchronous	5 @ 5500 Horse Power 600 RPM
Type of Pump	Johnson vertical four stage

*MGDI ■ Million Gallons Per Day
 HP ■ Horsepower
 RPM ■ Revolutions Per Minute

Disinfection
Pre & Post Chlorination

Liquid chlorine to evaporators then gas to V-notch chlorinators

Turbidity Removal
Chemical
Feed system
Rate of Feed

Aluminum Sulfate (Aluminum Ion)
3 Rotodip feeders
OS to 660 Gallons per hour

Taste & Odor Control
Chemical
Feed System
Rate of Feed

Powdered Activated Carbon
3 Rotodip feeders
Raw water conduits

Sedimentation
Rapid Mix Units
Number of Basins
Number of Flocculator
Paddle Units
Flocculation Rotation
Basin Retention Time

- 4 Vertical turbines
- 2 Capacity 15 Million gallons each
- 20 units 8 paddles each
- Vertical
- 2.4 - 6.6 Hrs.

Filtration
Number of Filters
Area Per Filter
Filtration Capacity
Water Per Unit
Length of Filter Run
Type of Underdrain
Gravel Layers
Gravel Size
Filter Media (Dual)
Effective Size
Uniformity Coefficient
Troughs, Above Anthrafilt
Frequency of Backwash
Wash Water Rates
Length of Wash
Surface of Wash Units

- 20
- 2320 Square feet
- Average = 14 MGD
- 129,000 Gallons above the media
- Average 30 hours
- Wheeler
- 5 layers 14 inch deep reverse graded
- 1/8" to 1" Diameter
- Sand - Anthracite
- 0.56mm - 0.9mm
- 1.40 - 1.80
- 32 inches
- 7 Per Day average
- 5 & 60 MGD (2 - 28 inch rise/min.)
- 13 Minutes
- Palmer Sweeps

Wash Water System
Capacity
Wash Water Pumps
Type of Pump
Type of Motors
Surface Wash

- 3 Pumps @ 60 MGD each
- 3
- Johnson vertical single stage
Induction 900 Horse power
House service used

ppm	= parts per million
mm	= millimeter
gpm	= gallons per minute

Lake Huron Water Treatment Plant
1999 Regulated Detected Contaminants Tables

Contaminant	Test Date	Units	Health Goal MCLG	Allowed Level MCL	Level Detected	Range		Major Sources in Drinking Water
						Low	High	
Inorganic Chemicals -Annual Monitoring at Plant Finished Water Tap								
Fluoride	Oct. 99	ppm	4	4	1.13	n/a	n/a	Erosion of natural deposits, Water additive which promotes strong teeth. Discharge from fertilizer and aluminum factories
Nitrate	Oct 99	ppm	10	10	0 24	n/a	n/a	Runoff from fertilizer use, Leaching from septic tanks; Sewage, Erosion of natural soils
Volatile Organic Compounds -Quarterly Monitoring at Plant Finished Water Tap								
Dichloromethane	Mar 99	ppb	0	5	0.29	0	0.29	Discharge from pharmaceutical and chemical factories
Disinfection By-Products - Quarterly Monitoring in Distribution System-								
Total	3/99	ppb	n/a	100	Average	a.3	41 3	By-Product of Drinking Water Chlorination
Tnhalomethanes	12/99	ppb	n/a	*(80)	15.3			
Total Tnhalomethanes is the sum of chloroform, dichlorobromomethane, dibromochloromethane, and bromoform. Compliance is based on the total * New MCL effective December 16, 2001.								

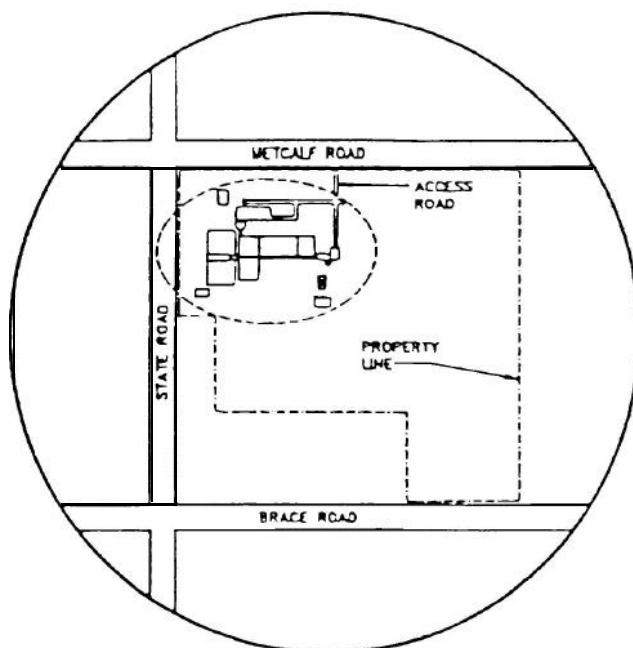
Turbidity -Monitored every 4 hours at Plant Finished Water Tap

Highest Single Measurement	Lowest Monthly % of Samples Meeting Turbidity Limit of 0.5 NTU (minimum 95%)	Soil Runoff
0.52 NTU	99.5%	

Turbidity is a measure of the cloudiness of water. We monitor it because it is a good indicator of the effectiveness of our filtration system. For turbidity levels 5 NTU or above a treatment technique (TT) is required

Microbiological Contaminants - Monthly Monitoring in Distribution System

Contaminant	MCLG	MCL	Highest Number Detected	Major Sources in Drinking Water
Total Coliform Bacteria	0	Presence of Coliform bacteria ≥ 5% of monthly samples	in one Month	Naturally present in the environment.
E. coli	0	A routine sample and a repeat sample are total coliform positive, and one is also fecal or E. coli positive	entire year	Human waste and animal fecal waste.


Lead and Copper Monitoring at Customers' Tap

Contaminant	Test Date	Units	Health Goal MCLG	Action Level AL	90th Percentile Value*	Number of Samples Over AL	Major Sources in Drinking Water
Lead	1999	ppb	0	15		54	Corrosion of household plumbing system; Erosion of natural deposits.
Copper	1999	ppm	1.3	1.3		64	Corrosion of household plumbing system, Erosion of natural deposits; Leaching from wood preservatives.

*The 90th percentile value means 90 percent of the homes tested have lead and copper levels below the given 90th percentile value. If the 90th percentile value is above the AL additional requirements must be met.

Lake Huron Treatment Plant

3993 Metcalf Road . Fort Gratiot, MI 48059

City of Detroit
Water and Sewerage Department
 Laboratory Analysis of Water Samples collected at
Lake Huron Plant
 on February 8, 2000

	Raw	Tap	MCL / [SMCL] ⁽¹⁾	MDL ⁽²⁾
Turbidity ⁽³⁾	1.03	0.15	0.3/95%	
Total Solids	153	151	[500]	10
Total Dissolved Solids	106	113	[500]	10
Aluminum (Al)	0.134	0.036	[0.05-0.2]	0.005
Iron (Fe)	0.151	0.007	[0.3]	0.002
Copper (Cu)	0.011	<0.001	1.3	0.001
Magnesium (Mg)	7.65	8.80		0.2
Calcium (Ca)	27.1	26.8		0.06
Sodium (Na)	3.87	3.96	20 ⁽⁴⁾	0.01
Potassium (K)	0.98	0.46		0.01
Manganese (Mn)	0.014	<0.001	[0.05]	0.001
Zinc (Zn)	0.02	<0.01	[5.0]	0.01
Silica (SiO ₂)	1.89	2.38		0.4
Sulfate (SO ₄)	15.4	23.9		
Chloride (Cl ⁻)	6.7	7.5	[250]	1.0
Phosphate (P)	0.02	0.29		0.01
Free Carbon Dioxide	2.2	7.4		
Total Hardness ⁽⁵⁾	100	99		
Total Alkalinity ⁽⁵⁾	79	72		
Carbonate Alkalinity ⁽⁵⁾	0	0		
Bi-Carbonate Alkalinity ⁽⁵⁾	79	72		
Non-Carbonate Hardness ⁽⁵⁾	21	27		
Chemical Oxygen Demand	4.7	2.7		2.0
Dissolved Oxygen	9.9	9.1		
Ammonia Nitrogen	<0.1	<0.1		0.1
Organic Nitrogen	0.1	<0.1		0.1
Nitrite Nitrogen	0.001	0.01	1.0	0.01
Nitrate Nitrogen	0.41	0.34	10.0	0.01
Fluoride	0.1	1.0	4.0	0.1
pH in pH units	7.86	7.29	6.5-8.5	
Specific Conductance in micromho at 25° C.	209	214		
Temperature in ° C.	0.8	5.8		

Notes: All units on mg/L unless otherwise noted. Raw sample is filtered and reported as Total Soluble Metals.

(1) MCL/[SMCL] = Maximum Contaminant Level/Secondary Maximum Contaminant Level (2) MDL = Method Detection Limit.

(3) NTU = Nephelometric Turbidity Units. Reported results are from a Grab sample. EPA requirements are for 95% of monthly readings to be <0.3 NTU. (4) EPA Guidance level (5) = As Calcium Carbonate. (6) by EDTA titration "—" = Less than

Analyst: Brian Brown, Sr. Analyst Chemist

By:

Pamela Turner
 Pamela Turner

Stephen F. Gordon

Manager, Water Quality Division

Director, Water & Sewerage Department

Lake Huron Water Treatment Plant

1999 Unregulated Detected Contaminants Tables

Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

Contaminant	Test Date	Units	*Future MCLG	*Future MCL	Average Level Detected	Range	
						Low	High
Fluorotrichloromethane	3/99-11/99	ppm	n/a	n/a	0.24	0	0.94
Trichloromethane (Chloroform)	3/99-12/99	ppb	0	n/a	8.0	3.2	29.0
Bromodichloromethane	3/99-12/99	ppb	0	n/a	5.1	3.4	9.2
Dibromochloromethane	3/99-12/99	ppb	60	n/a	2.2	1.6	3.2
Bromoform	3/99-12/99	ppb	0	n/a	0.2	0	0.2

Chloroform, dichlorobromomethane, dibromochloromethane, and bromoform are inhalomethanes. The MCL is set for the total or sum of these individual components.

'New MCLG effective December 16, 2001'